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Thermal fatigue in polycrystalline alumina 
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Damage accumulation in polycrystalline alumina subjected to cyclic thermal loading was 
studied via non-destructive elastic modulus and internal friction measurements. These non- 
destructive techniques were sensitive to cracks formed by thermal loading. Thermal shock 
damage was observed to saturate as a function of an increasing cumulative number of thermal 
shock cycles. The observed power law relationship between the damage saturation and 
thermal shock difference implies a fatigue-like power law relation in stress. The exponent has 
a value of approximately 12 for the range of AT included in this study. Thermal shock damage 
induced changes in internal friction were found to be a function of a crack damage parameter. 
These thermal fatigue results of polycrystalline (unreinforced) alumina are also compared to 
thermal fatigue results for SiC whisker-alumina composites. 

1. Introduction 
Thermal shock damage may result from any rapid 
temperature change which induces large thermal 
stresses in a component. Gas turbine components, 
high temperature valves, and heat engine components 
and other criticial applications of ceramics often 
involve thermal fatigue, hence a detailed investigation 
of cyclic thermal shock is necessary. 

A number of difficulties are encountered in fatigue 
testing of brittle materials. In order to characterize the 
strength of brittle ceramic materials, a large number of 
test specimens is required [1-3]. Scatter in strength 
data may sometimes obscure the fundamental trends 
in the data [1-3]. Non-destructive techniques such as 
elasticity and internal friction can measure changes 
induced by thermal shock damage [4-9]. In addition, 
the crack-induced changes in the elasticity and internal 
friction reflect the entire flaw population [9], whereas 
the strength changes can be attributed to changes in 
the critical flaw lengths. 

The present study compares cyclic thermal shock 
damage in polycrystalline alumina to results of a 
previous thermal fatigue on alumina-SiC whisker 
reinforced ceramic-ceramic composites [5]. In both 
studies, the evolving crack damage was monitored 
non-destructively via elastic modulus and internal 
friction measurements. 

1.1. Fatigue in ceramics - Literature review 
Recent work [10-14] has shown that crack extension 
due to repeated mechanical loading of ceramics can be 
described in equations that are similar in form to those 
developed for fatigue crack propagation in metals 
[15], namely 

da/dn = W A K  q (1) 

where a is the length of the fatigue crack, n the cumu- 
lative number of stress cycles, AK the stress intensity 
range g m a  x - -  groin ,  and the parameters W and q de- 
pend on the material, the test temperature, etc. 
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Table I summarizes the materials, test geometries, 
crack propagation rates, and proposed energy dissi- 
pation mechanisms for studies of repeated mechanical 
loading of ceramics. The authors in each of these 
studies (Table I) expressed their crack propagation 
data in terms of Equation 1 (except in [11], as noted in 
Table I). Note that while experimentally determined 
values of the fatigue exponent, q, for metals typically 
range from about 2 to 7 [15], q ranges from about 9 to 
27 for the ceramic materials included in Table I. 

Several researchers have noted effects such as fatigue 
crack closure and crack branching in ceramics under 
repeated mechanical loading. Dauskardt et al. [13] 
measure fatigue crack closure in stabilized zirconia 
using a strain gauge. Magnesia stabilized zirconia 
compact tension specimens showed evidence of 
fatigue crack closure behaviour similar to that 
observed in metals [13]. Dauskardt e t al. [13] suggested 
that the fatigue in these toughened ceramics may be 
related to several mechanisms including crack tip 
shielding by stress induced phase transformation 
[16, 17], crack deflection [18, 19], crack bridging [20] 
and crack surface asperity wedging [21-27]. Optical 
micrographs of the crack path support the crack 
deflection and crack bridging hypothesis [13]. 

Kim and Mubeen [14] attribute the fatigue in West- 
erly granite to the crack closure due to crack face 
interference [21-27] and crack branching [28]. SEM 
micrographs of replicas taken from the near-notch 
area in the granite specimens [14] indicate crack 
branching along the grain boundaries. From the mor- 
phology of the observed cracks, Kim and Mubeen 
assumed that the crack arrested at several points. The 
repeated crack arrest was assumed to correspond to a 
temporary reduction in da/dn, where da/dn was 
inferred from compliance measurements. 

Under cyclic compression loading, Suresh and 
coworkers observed stable crack growth for pre- 
notched specimens of unreinforced polycrystalline 
alumina [21-24], SiC whisker reinfored Si3N 4 [25], and 
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SiC whisker reinforced alumina [26]. For each material, 
the macrocrack propagating from the pre-notch was 
monitored (on both sides of the specimen) by a travel- 
ling optical microscope. The macrocrack growth rates 
decreased monotonically as the crack length increased. 
A graph of crack length plotted against the cumulative 
number of load cycles showed a series of plateaux 
which may indicate steady state behaviour over certain 
intervals of cyclic loading. The plateaus in crack 
length during cyclic loading, as observed by Suresh, 
perhaps may be similar to the crack damage saturation 
behaviour observed in thermally fatigued monolithic 
polycrystalline alumina (present study) and in SiC 
whisker reinforced alumina [5]. 

Suresh and coworkers explained the fatigue crack 
growth by a combination of several plausible physical 
mechanisms. Unreinforced ceramics, ceramic-metal 
composites, and ceramic-ceramic composites may 
involve different mechanisms, at least in part due to 
differing microstructures. For unreinforced ceramics, 
such as the polycrystalline alumina in Suresh's study 
[21-24] and the polycrystalline alumina in the present 
study, the possible mechanisms for the fatigue crack 
growth include crack wedging by crack debris [10], 
tensile residual stress at the notch tip [21], frictional 
sliding and opening of microcrack [28], and grain 
boundary cracking induced by compressive loads and 
residual thermal stresses [29]. 

The experimental observations of Reece [10], 
Grossmuller [12], Hoshide [11], Dauskardt [13], Kim 
and Mubeen [14], and Suresh [21-27] indicate the 
presence of fatigue effects in toughened ceramics 
[12, 13], polycrystalline ceramics [10, 11, 22-24], 
geological materials [14], and ceramic-ceramic com- 
posites [25, 26] under cyclic mechanical loading. In 
addition to involving purely mechanical loading, the 
cyclic mechanical loading research cited above involves 
measurements on a single advancing macrocrack, 

although microcracks may be generated in the vicinity 
of the macrocrack. The thermal shock loading studies 
of unreinforced alumina (this study) and SiC whisker 
reinforced alumina [4, 5] by the present authors 
involve "distributed" damage, in that it is no longer 
limited to a single advancing crack. 

2. Experimental procedure 
2.1. Materials 
Alumina substrates (96% alumina) used for this 
research were supplied by Saxonburg Ceramic Incor- 
porated (Monroe, NC). The as-received specimens 
were rectangular plates with dimensions of 11.5 x 
11.5 x 0.1 cm 3. Specimens were cut into prismatic 
bars using a low speed diamond saw. The edges of cut 
specimens were polished using 600 grit SiC paper to 
obtain a more uniform width, however, the specimens 
were not intentionally edge bevelled. Then the speci- 
mens were annealed in air at 1150~ for 12h to 
remove residual stresses that may have been present 
due to processing or due to specimen preparation. 
The dimensions of annealed specimens are given in 
Table I I .  An average grain size of 10#m was deter- 
mined by the linear intercept technique on SEM 
micrographs on fracture surfaces (Fig. 1). The average 
grain size was computed by multiplying the average 
intercept length by a correction factor of 1.5 [30]. The 
mass density of the polycrystalline alumina used in 
this study, as determined from the mass and dimen- 
sions of each specimen, ranged from 3.68 to 
3.74gcm 3. This corresponds to a volume fraction 
porosity of approximately 6 to 7.4%. 

Since the comparison of the thermal shock damage 
results for the unreinforced polycrystalline alumina 
and the SiC whisker reinforced alumina will be central 
to this paper, the material properties of the SiC 
whisker-alumina composites will be reviewed here, 
with additional details available in [5]. Whisker 

T A B L E  I Survey of fatigue crack behaviour for ceramics subjected to cyclic mechanical loading 

Test specimen da/dN range Fatigue Proposed dissipation Starting Reference 
(material and geometry) (m/cycle) exponent q mechanism flaws 

1. Alumina 
a. Wedge opening loaded 10 -9 -10 -7 14 Wedging and 

sliding asperity 
b. Tapered double 10 _9 -10 6 27 Wedging and 
cantilever beam sliding asperity 
c. Three-point bends 10 -8 -10 -5 9.12 * 

2. MgO-PSZ 
a. Compressive loading 10 -9 -10 -7 131 * 
b. Compact-tension 10-1~ -6 24 Transformation, 
(specimens loaded in crack closure, 
tension-tension) crack deflection and 

crack bridging 

3. Silicon nitride 
a. Three-point bend~ 10-10_10 6 21.1 

4. Westerly granite 
a. Three-point bend 10-10_10 8 12 Crack closure and 

crack branching 

Notch [10] 

Notch [10] 

Indentation [I l] 
flaws 

Hole [12] 
Notch [13] 

Indentation [11] 
flaws 

Slot [14] 

* Dissipation mechanisms were not proposed for this study. 
].Fatigue exponent calculated by the present authors from damn against K plot of Grossmuller [12]. 
~The authors in this study expressed their crack propagation rate in terms of Ke~ instead of AK. 

5044 



Figure 1 A SEM micrograph showing a fracture surface of  the 
polycrystalline alumina specimens. 

reinforced alumina composites were processed by 
Alcoa from A- 16 SG alumina, reinforced with 20 vol % 
of SiC whiskers. Dimensions of the as-received 
specimens were 7 x 0.7 x 0.3cm 3. Mass density 
of the specimens ranged from 3.76 to 3.80gcm 3. 
The average grain size of the alumina matrix was 
approximately 4 to 6#m, as determined by linear 
intercept technique on SEM micrographs of fracture 
surfaces, again computing the average grain size by 
multiplying the average intercept length by 1.5 [30]. A 
SEM micrograph of a fracture surface of the SiC 
whisker reinforced alumina composite is given in 
Fig. 2. 

2.2. Elasticity and internal friction 
measurements 

The elasticity and internal friction measurements were 
made by the sonic resonance technique [31]. A block 
diagram for the modulus and internal friction equip- 
ment is shown in Fig. 3. The flexural and the torsional' 
resonant frequencies data were converted into 
Young's and shear moduli values by using the 
equations of Pickett [32] and the modification given by 
Hasselman [33]. Equation 2 was used to compute 
Poisson's ratio, v, from the measured Young's modu- 
lus, E, and shear modulus, G, 

v = E / 2 G -  1 (2) 

The internal friction was determined by the free 
decay method [34], in which the specimen is driven at 
a mechanical resonance, then the driving signal is 
turned off and the number of cycles, S, required for 
the signal amplitude to decay from amplitude I~ to 
amplitude/2 is measured electronically (Fig. 4). The 

T A B L E  II  Dimensions,  mass,  and mass density of  alumina 
specimens 

Specimen Dimensions Mass Density 
label (cm) (g) (gcm - 3 ) 

A1 11,48 x 1.23 x 0.108 5.6741 3.720 
A2 11,45 x 1.27 x 0.108 5.8513 3.716 
A3 11,39 x 1.28 x 0.108 5.7738 3.683 
A4 11.47 x 1.28 x 0.107 5.8162 3.715 
A5 I1.48 x 1.26 x 0.108 5.8148 3.737 
A6 11.49 x 1.24 x 0.108 5.7210 3.727 

Figure 2 A fracture surface of a SiC whisker reinforced alumina 
specimen [51. 

measured internal friction, Q-l, is given by 

Q-'  = In (I~/I2)/~S (3) 

The measured internal friction represents two 
damping contributions: (1) Q~-~, the internal friction 
due to the specimen itself and (2) Q2 ~ , the internal 
friction due to the apparatus. The specimen and 
apparatus Contributions may be separated by measur- 
ing internal friction as a function of suspension pos- 
ition [34]. All internal friction values reported in this 
paper are those for specimen internal friction only. 
Details of the apparatus and the internal friction 
measurement procedure are given elsewhere [4-6]. 

2.3. Cyclic thermal shock  test 
Cyclic thermal shock tests were performed using the 
apparatus shown in Fig. 5. Details of the apparatus 
are given elsewhere [4]. Thermal shock specimens were 
held at a preselected temperature for 20 rains in a 
vertical-muffle electric furnace before quenching into a 
container of distilled water. The temperature of the 
water bath was approximately 21 o C and was measured 
by a mercury-in-glass thermometer. After the speci- 
mens had been subjected to a preselected cumulative 
number of thermal shock cycles, the elastic modulus 
and internal friction were measured for each specimen. 
The observed changes in the elastic modulus and 
internal friction as a function of thermal shock treat- 
ment were used to assess the accumulated thermal 
shock-induced damage. 

& 
L 

:::~ I 
Figure 3 Schematic of  the sonic resonance apparatus  for determin- 
ing the elastic moduli  and the apparatus  for determining internal 
friction via the log decrement method (free decay o f  the natural  
vibration modes). 
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driving f o r c e  r e m o v e d  

Figure 4 Free decay of  natural vibration of  an anelastic solid, which 
is the basis for the internal friction measurements. 

3. Results and discussion 
3.1. Young's modulus, shear modulus and 

internal friction of unshocked specimens 
The initial (unshocked) values of Young's modulus, 
shear modulus, internal friction, and Poisson's ratio 
are listed in Table III for each of the specimens 
included in this study. As is typical for polycrystalline 
ceramics [35-39], the Young's modulus and shear 
modulus of all the unshocked specimens decreased 
with increasing porosity. The unreinforced alumina 
specimens exhibit a relatively limited range of porosity, 
which in turn implies limited effects due to porosity. 
Appendix A includes a discussion of modulus and 
internal friction dependencies on porosity. 

For unshocked specimens of unreinforced alumina, 
the internal friction of alumina varied from 6.23 to 
10.6 x 10 -5, while that of unshocked SiC whisker 
reinforced alumina [5] ranged from 13.2 to 18.6 x 
10 -5. The internal friction values of the unreinforced 
alumina were thus about 50% lower than those of SiC 
whisker reinforced composites, despite the fact that 
elastic moduli for the composite were about 20% 
higher than those of the unreinforced alumina. The 
higher internal friction of the composites might be 
explained on the basis of the residual stresses [5, 6] and 
the presence of interfaces between the matrix and the 
whiskers t, but further work needs to be done to clarify 

TABLE III Room temperature Young's modulus (E), shear 
modulus (G), Poisson's ratio (v) and internal friction (Q) for un- 
shocked unreinforced alumina specimens (after annealing) 

Specimen E G v Q- t  ( x  10 -5) 
(GPa) (GPa) 

A1 333.85 135.68 0.23 10.6 
A2 332.96 135.17 0.22 8.1 
A3 323.87 132.78 0.23 8.57 
A4 332.5 135.32 0.23 8.3 
A5 338.53 * * 6.23 
A6 336.12 136.69 0.23 9.91 

*These data were not measured. 

therrnocouple 

~___--.J 

water 

m 

specimen 

Figure 5 Schematic diagram of the thermal shock test apparatus 
including furnace and quenching bath. 

such differences in the internal friction for the com- 
posite and non-composite specimens. 

3.2. Affects of cyclic thermal shock on 
elasticity and internal friction 

Figs 6 to 8 display the effects of cyclic thermal shock 
on the Young's modulus, E, shear modulus, G, and 
internal friction, Q 1 for the unreinforced alumina 
specimens. At low and intermediate values of thermal 
shock severity, AT, the internal friction and modulus 
of the unreinforced alumina specimens behaved the 
same as the SiC whisker reinforced alumina [4, 5]. 
Decreases in both the Young's modulus and the shear 
modulus always accompanied an increase in internal 
friction (Figs 6 to 8). As AT increases, the thermal 
shock damage saturation levels also increase, as indi- 
cated by changes in modulus and internal friction. 

Relative changes in modulus and internal friction 
are listed in Table IV for each of  the six thermally 
shocked alumina specimens. The magnitude of the 
internal friction changes were much larger than 
modulus changes, which agrees with trends in elastic 
modulus and internal friction observed in other 
studies [4-6, 8, 9, 35]. 

For  the unreinforced alumina specimens included in 
this study, no saturation behaviour was observed for 

350  , 3,o~_ 
= 

~ = 330! ~ 

3 2 0 -  

310  

�9 
�9 A 

~o ~o 6'o 8'o I oo 
Number of thermok shocks 

Figure 6 Young's modulus of alumina specimens, A1 (e ,  AT = 
230 ~ C), A2 (o, AT = 250 ~ C), A3 (zx, AT = 270 ~ C), A4 (A, AT = 
290~ A5 (B, AT = 310~ and A6 (rq, AT = 380~ as 
a function of the cumulative number of thermal shock cycles. 
Full curves represent least-squares best fit to E = E 0 -- A[1 -- 
exp (-- an)]. 

t i n  polymer composites, internal friction contributions due to matrix-fibre interactions have been observed [40]. Similar effects are likely 
in ceramic composites. 
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Figure 7 Shear modulus  of  alumina specimens, A1 (O, AT = 
230~ A2 (o,  AT = 250~ A3 (zx, AT = 270~ A4 
(A, AT = 290~ and A6 (rq AT = 380~ as a function of  the 
cumulative number  of  thermal shock cycles. Full curves represent 
least squares best fit to G = Go - C[1 - exp ( -Tn)] .  
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Figure 8 Internal friction of alumina specimens, A1 

A 

o 

80 1 O0 

(e,  AT = 230~ A2 (o,  AT = 250~ A3 (zx, AT = 270~ 
A4 ( ~ , , A T =  290~ A5 (II, A T =  310~ and A6 ( n  
AT = 380~ as a function of the cumulative number of thermal 
shock cycles. Full curves represent least-squares best fit to 
Q ' = Q0-' + B[I - exp (-fln)]. 

the two most severe thermal shock conditions 
(AT = 310 and 380 ~ C). Specimen A5 (AT = 310 ~ C) 
apparently approached saturation in the interval 
between five and ten thermal shock cycles. An abrupt 
decrease in the Young's modulus and an abrupt 
increase in internal friction, however, occurred for 
specimen A5 in the interval between 11 and 20 thermal 
shock cycles. The abrupt change may result from the 
linkage of  the microcracks to form macrocracks, since 
a corner of the specimen A5 broke off after 40 cum- 
ulative thermal shock cycles. The corner fragment had 
a mass of  0.083 g, compared to a total specimen mass 
of 5.815g. For  specimen A6 (AT = 380~ thermal 
shock damage was measurable only after the first and 
second thermal shock cycle since the specimen broke 
into two large pieces as a result of  the third thermal 
shock. 

For  a temperature difference of 290 ~ C, specimen 
A4 showed damage saturation behaviour between 10 
and 80 cumulative cycles. A 0.145 g fragment broke 
off from a corner of the specimen after 81 thermal 
shock cycles (total mass of  A4 was 5.816 g). In Figs 6 
to 8, note the slight changes from the saturation 

damage level that are evident in the modulus and 
internal friction measurements at the 80 cumulative 
cycles. The fracture of a portion of  the specimen upon 
the 81 st thermal shock cycle implies that the deviation 
from the saturation damage level may be related to 
microcrack link-up and the failure of a portion of  the 
specimen. 

In contrast to the unreinforced alumina composites, 
none of the SiC whisker reinforced alumina specimen 
exhibited macrofracture (none of  the SiC whisker- 
alumina specimen fractured for temperature differ- 
ences ATup  to 380 ~ C [5]). In addition, each of the SiC 
whisker-alumina specimens showed damage satu- 
ration behaviour for up to 100 cumulative thermal 
shock cycles [5]. 

3.3. Quantitative analysis of thermal shock 
damage 

3.3. 1. Modulus and internal friction as a 
function of repeated thermal shocks 

The same empirical equations developed by the pres- 
ent authors for the modulus and internal friction 
changes of thermally shocked SiC whisker reinforced 

T A B L E IV Relative changes in modulus  and internal friction for the thermally shocked unreinforced alumina specimens and SiC 
whisker reinforced alumina composites. The subscript "0"  refers to the value of  the indicated parameter prior to the initial thermal shock, 
while the subscript "sat"  refers to the "saturated" or steady-state value of  the parameter  that is obtained after repeated thermal cycling (see 
Equations 4 to 8). 

Specimen label AT( ~ C) (Eo - E~at)/Eo (Go - Gsat)/Go (Q~t I -- Qol  ) /Qo I 

Unreinforced polycrystalline alumina 
A1 230 0.0010 0.0009 0.56 
A2 250 0.0078 0,0060 6.81 
A3 270 0.0143 0,0122 9.00 
A4 290 0.017l 0,0157 10.09 
A5 310 0.0575 * 24.08 
A6 380 f + t 

SiC whisker reinforced alumina composites 
HP160 270 0.007 * 1.2 
HPI71 310 0.0172 * 3.18 
HP160-RA 340 0.0285 * 5.04 
HPI58 380 0,0583 * 10.49 

*Shear modulus was not measured for this specimen. 
f F o r  AT = 380~ the specimen fractured after third thermal shock, so that saturation values of moduli and internal friction could not be 
determined. 

5 0 4 7  



alumina composites [5] can be fit to the thermal shock ~, ~, 
data for the unreinforced alumina, namely ~ 

E = /7o - A[1 - exp ( - a n ) ]  (4) 

and 

.~_ Q-1 = Qo 1 + B[1 - exp (-f in)]  (5) 
& 

where A and B are damage saturation parameters (see ~ 
Fig. 9), ~ and fl the rate of decrement or increment 
(rate constant), respectively, E0, and Qo I the undam- -= 
aged specimen's Young's modulus or internal friction, 
respectively, E, and Q-1 the damaged specimen's 
Young's modulus or internal friction, respectively and 
n the cumulative number of thermal shock cycles at a 
fixed AT value. 

For the shear modulus, we introduce the relation- 
ship 

G = Go - C[1 - exp (-Tn)] (6) 

where C is the damage saturation parameter (see Fig. 
9), 7 the rate of decrement (rate constant), Go the 
undamaged specimen's shear modulus and G the dam- 
aged specimen's shear modulus. 

For a fixed value of AT, the constants A, B and C 
represent a damage saturation or steady state level of 
damage for a large number of thermal shock cycles 
(Fig. 9). The constants e,/3 and y are related to the rate 
of change of the modulus or internal friction as a 
function of thermal cycle treatment. We see from 
Equations 4, 5 and 6 that in the limit of n --, 0, 
dE/dn = - A ~ ,  dG/dn = - C y ,  and dQ-Vdn = B[3. 

Table V shows the results of the non-linear 
regression based on Equations 4, 5 and 6. As AT 
increases, the damage saturation, A, B and C increase, 
and the rate constants, c~, #, and y increase. As discussed 
previously, Equations 4 and 5 were used to describe thus 
the thermal fatigue behaviour in SiC whisker-alumina 
composites [5], but the authors found the same 
equations could describe the thermal fatigue behav- 

t 
I I~ 'A or  C 
1 

~l'Saturation damage level of E or G 

~Saturation damage level of Q-I 

I 

I 

1 . . . . . . .  • . . . . . . . .  "~'Qo 

Number of thermal, shocks 

Figure 9 Schematic diagram illustrating thermal shock saturation 
levels A, B and C and the rate constants  c~, fl and 7. (see Equations 
4 to 6.) 

iour of the unreinforced polycrystalline alumina. The 
parameters A, B, c~ and/3 for the SiC whisker-alumina 
were, however, different from the corresponding par- 
ameters for the unreinforced alumina. As discussed in 
Section 3.4, the damage for given values of AT and n 
is greater for the unreinforced alumina than for the 
SiC whisker-alumina composites. 

3.3.2. Relation between Young's modulus 
saturation constant A and shear 
modulus saturation constant C 

Equations 4 and 6, respectively, describe the decrease 
in Young's modulus and decrease in shear modulus 
with microcrack damage accumulation. For a suf- 
ficiently high number of thermal shock cycles, n, the 
factors [1 - exp ( -  c~n)] and [1 - exp (yn)] approach 
unity and Equations 4 and 6 become 

Esat = E0 - A (7) 

E, , , /F~o  = 1 - A / E o  

Gsa t = G O - C (8 )  

T A B L E  V For the unreinforced alumina specimens, results of  the non-linear regression analysis for the damage saturation 
parameters A, B, and C and the rate constants  ct, # and y (see Equations 4 to 6 and Fig. 9). The unshocked values of  internal friction Qo ~, 
Young 's  Modulus,  Eo, and shear modulus,  Go, are included for reference. 

Specimen A 1 A2 A3 A4 A5 A6 

A T (~ C) 230 250 270 290 310 380 

Qo I ( •  10 5) 10.6 8.1 8.6 8.3 6.2 9.9 
E 0 (GPa) 333.85 332.96 323.87 332.50 338.53 336.12 
G O (GPa) 135.68 135.17 132.78 135.32 * 136.69 

A (GPa) 0.34 2.87 4.77 5.70 19.42 t 
B ( x  10 5) 6.0 34.9 75.4 80.68 150.9 t 
C (GPa) 0.12 0.95 1.64 2.13 * t 

c~ 0.030 0.087 0.499 0.616 1.005 t 
# 0.050 0.145 0.970 0.927 1.338 t 
y 0.036 0.178 0.836 0.886 * t 

correlation coefficient 0.96 0.92 0.97 0.96 0.99 ? 
(~, A) 
correlation coefficient 0.96 0.94 0.98 0.97 0.99 t 
(#, 8) 
correlation coefficient 0.99 0.97 0.98 0.95 * + 
(~, c) 

* Shear modulus  was not  measured for this specimen. 
t A t  AT = 380 ~ C, no saturation behaviour was observed since the specimen broke into two pieces after third thermal shock. 
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thus 
Gsat/G = 1 -- C/Go 

where E~,, and G~a, are the saturation (steady state) 
values of the moduli as a function of the cumulative 
number of thermal shock cycles (Figs 6 and 7). 

Salganik's [42] relation for the decrement in 
Young's modulus, E, and shear modulus, G, are 

E = Eo (1 - flVo)S) (9) 

o = Go (1 - g(vo)e)  (10)  

where 

f (vo)  = 16 (10 - 3v0)(1 - v~)/45(2 - v0) (11) 

g(vo) = 32(1 - v0)(5 - v0)/45(2 - %) (t2) 

At the saturated state, Equations 9 and 10 can be 
rewritten as 

Esat/E o = 1 - f (vo)%t  (13) 

G~t/Go = 1 - g(vo)esat (14) 

where e~t is the crack damage parameter at the satu- 
rated microcrack damage state. Combining Equations 
7 and 13 gives 

A/Eo = f(vo)es~t (15) 

Likewise, Equations 8 and 14 yield 

C / G  0 = g(t~0)Ssa t (16)  

Combining Equations 15 and 16 gives 

C = [g(vo)/f(vo)](Go/Eo)A (t7) 

The relation between Young's modulus and shear 
modulus is given by 

G0 = E0/2(1 4- v0) (18) 

Substituting Go/Eo from Equation 18 into Equation 17 
yields 

C = k(v o)A (19) 

where 

k(vo) = [(5 - v0)/(10 - 3v0)(l 4- Vo) 2] (20) 

The proportionality constant k(vo) = 0.34 for the 
alumina specimens included in this study (where 
Poisson's ratio ranged from 0.22 to 0.23). A least 
squares best fit of the experimental data for C against 
A yielded an experimental value of 0.357 for k(vo), 
with a correlation coefficient of 0.98 (Fig, 10). Thus 
based on Salganik's theoretical results, Equation 19, 
which has no free parameter, predicts well the observed 
linear relation between the elastic modulus damage 
parameters A and C. If Poisson's ratio, Vo, and the 
damage parameter, A, are known then the damage 
parameter, C can be predicted from Equations 19 and 
20. 

3 .3 .3 .  A Q  -1 as  a f u n c t i o n  o f  c r o c k  d e n s i t y  
p a r a m e t e r ,  

From Salganik's Equation 9 and empirical Equations 
4 and 5, the internal friction change can be expressed 
as [4, 5] 

AQ -~ = C1[1 - (1 - Cze) q] (21) 

2. 

C 

1 

o 
0 

% 
7 

2 4 
A 

Figure t0 Relation between the measured elastic moduli  damage 
saturation parameters,  A and C. The broken line corresponds to 
the least squares fit to the experimental data, while the full curve 
is the relation predicted from Equations 19 and 20 (using the 
measured values of  Poisson's ratio to determine the proportionality 
constant  k(vo). 

where C1, C2 and C 3 a r e  constants. For a sufficiently 
small C2e , the term (1 - C2~) c3 in Equation 21 can be 
written as (1 - Cl C2e) using the binomial expansion 
therorem. The Equation 21 can be approximated to 
linear equation, AQ-1 = D~,  where D is constant. 

A least-square best fit of Equation 21 yields 19.44 x 
10 5,670, and 0.64 for C~, (72, and C3, respectively. In 
the previous study, the value 6'2 of the alumina-SiC 
composites [5] was 390, which is relatively small and 
the linear approximation to the power-law form is in 
fact a good approximation. The (72 value of the present 
study is, however, relatively higher than that o f  
the previous study, the linear approximation to the 
power-law form is not so good as compared to the 
previous study, (Fig. 11). In Fig. 11 the five AQ -~ and 
AE against ~ curves in Figs 6 and 8 are effectively 
collapsed onto a single line of AQ -~ against ~, crack 
damage parameter. 

3.3.4. The dependence of the damage 
saturation parameters on the thermal 
shock temperature difference 

The normalized saturation values, A/Eo, C/Go 
and B/Qo 1 show a power law relationship with 

- -  200- 
,~ j J  

• ~. 
/ -  /~.nw i'm 

I 1 0 o -  

o 160 26o 360 4o0 

Crack damage parameter (x lO -4} 

Figure 11 AQ -I as a &act ion of  ~ for the alumina specimens. 
Symbols indicate the AT value for a given measurement  on ther- 
mally fatigued specimens. Symbols are the same in Figs 6 and 7 
(o, AT = 230~ o,  AT  = 250~ A, AT = 270~ zx, AT = 
290~ m, AT = 310~ El, AT = 380~ Note that measure- 
ments with similar A T values are grouped together along the curve. 
Full curve represents least-squares best fit to power law relation. 
Broken curve represents best fit to linear equation in a. 
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Figure 12 Logarithm of the normalized saturation damage par- 
ameters (A/Eo) and (B/Qs 1) against logarithm of the normalized 
temperature. (I:::1 �9 In (B/Qo), o �9 In (A/Eo), ~ In (C/Go).) 

non-dimensional temperature difference, AT/Tr, 
(Fig. 12) namely 

A/Eo = j l (AT/Tr)  p~ (22) 

B/Qo 1 = j2(AT/Tr)  p2 (23) 

C/Go = j3(AT/Tr)  p3 (24) 

where Tr, a reference temperature, was taken as 293 K 
(room temperature). AT, the temperature difference 
between the furnace temperature and the water bath 
temperature, was expressed in Kelvin. A least-squares 
best fit yieldedjl = 0.030,j2 = 14.79 and j3 = 0.026 
for Equations 22, 23 and 24. The exponents pl, p2 and 
p3 are, respectively, 11.8, 11.3 and 12.1. 

Fig. 12 compares the temperature dependence of 
the saturation damage levels for the unreinforced 
alumina (plotted using the open symbols) and the SiC 
whisker reinforced alumina (the closed symbols). In 
this log-log plot, the slopes of the curves correspond 
to pl, p2, and p3 in Equations 22 to 24. Slopes of 
In (A/Eo) and In (B/Qo ~) against In (AT/Tr) are very 
similar for the SiC whisker reinforced alumina (5.9 
and 5.7 respectively). Similarly, the slopes of in (A/Eo), 
In (B/Qo~), and In (C/Go) are very similar for the 
unreinforced alumina (11.8, 11.3, and 12.1, respect- 
ively). For both the composite and non-composite 
specimens, the thermal shock damage level as 
measured by either the elastic modulus or by internal 
friction, has a very similar functional dependence on 
the quenching temperature difference. 

The exponents p~ and p2 of the polycrystalline 
alumina are almost double those of the SiC whisker 
reinforced alumina composites. From Equation 22 
and 23, we see that doubling the exponents p~ and p2 
squares the value of A and B. Thus the polycrystalline 
alumina specimens are far more sensitive to thermal 
shock damage as a function of AT than are the SiC 
whisker reinforced alumina composites, therefore, the 
whisker reinforcement is shown to dramatically 
improve the thermal shock damage of alumina. 

As observed in previous studies [4, 5], the relative 
changes in internal friction are much larger than the 
corresponding changes in elastic modulus, for a given 
level of thermal shock damage. For a given AT, and 
for a fixed reference temperature T r, the ratio of 
the two normalized saturation parameters (B/Qol)/ 
(A/Eo) is approximately equal to j2/ j l  (see Equations 
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22 and 23). The ratio j2/ j l  (which is approximately 
500) is a "sensitivity ratio" [5] since it represents, for 
a given level of thermal shock damage, the relative 
sensitivity (or relative change) in internal friction com- 
pared to the changes observed for Young's modulus. 
In comparison, the sensitivity ratio for the SiC whisker 
reinforced alumina composites was about 200 [5]. 

The sensitivity ratio j3/ j l  is (C/Go)/(A/Eo) for a 
given AT represents a relative sensitivity in shear 
modulus compared to the changes observed for 
Young's modulus. Thus the saturation damage C can 
be expressed as 

C = (Go/Eo)(j3/jl)A (25) 

where for the unreinforced alumina Go lEo = 
1/2(1 + v0) has the value of 0.41 and j3/ j l  = 0.88. 
Thus Equation 25 becomes C = 0.36A, which is 
essentially identical to the numerical results obtained 
in a different manner from Equation 19 (Section 
3.3.2 0 . 

In Equations 22 to 24, the power law in ATcan be 
replaced by a power law in thermal stress, since the 
thermal shock induced stresses are linearly propor- 
tional to the temperature difference. Also the satu- 
ration damage parameters can be expressed in terms 
of integrated crack growth [5]. Thus, Equations 22 to 
24 can be expressed as a power law function of stress 
intensity factor, K [5]. This power law relation in stress 
intensity factor, K shows a fatigue relationship similar 
to that of metals. 

3.4. Comparison of the cyclic thermal shocks 
in unreinforced alumina and SiC whisker 
reinforced alumina composites 

Water quenching of samples produces time varying 
tensile stresses at surface regions of the specimen. For 
simple geometry (a flat plate, for example), the maxi- 
mum stresses can be evaluated using an equation such 
as [43] 

O'ma x = f(Nbi)[Eo~AT/(1 - v)] (26) 

where O'ma x is the maximum value of the actual surface 
stress, E the Young's modulus, c~ the average thermal 
expansion coefficient, AT the temperature difference 
of thermal shock, v Poisson's ratio and f(Nbi) the 
function of Blot number (maximum non-dimensional 
thermal stresses at the surface). The Blot number, Nui, 
is a non-dimensional parameter given by 

Nbi = ht/k (27) 

where h is the heat transfer coefficient, t the half 
thickness of plate and k the thermal conductivity. 

Manson [44] described f(Nbi), the maximum non- 
dimensional thermal stresses at the surface of the 
plate, as 

f(Nbi) =- 1/[1.5 + 3.25/Nu~] (28) 

for 0 < Nb~ < 5. The Nb~ values for the unreinforced 
polycrystalline alumina and SiC whisker reinforced 
alumina listed in Table VI satisfy the assumption to 
use Equation 28, thus we can use Equation 26 to 
compare the magnitudes of the maximum non- 
dimensional surface thermal stresses for the 



TAB L E V I Thermal properties of polycrystalline alumina and SiC whisker reinforced alumina including the heat transfer coefficient, 
h, the thermal conductivity, k, and the Biot modulus, Nu. 

h (cal sec i c m - 2 o c - l )  t (cm) k (cal sec -1 cm -1 ~ i) Nbi, 
(for water quenching) 

Polycrystalline 0.1-1.0 [45] 0.05 0.077 [46] 
Alumina 

SiC Whisker 0.1-1.0 [45] 0.15 0.084 [46]? 
Reinforced Alumina 

0.07-0.65 

0.18-1.79 

* Nbi is calculated from Equation 27. 
*There was 20 vol % of SiC whisker in the alumina matrix both in this study and [46]. 

unreinforced alumina and for SiC whisker reinforced 
alumina composites [5]. To simplify the calculations, 
we shall assume the same range for the heat transfer 
coefficient, h, for both the unreinforced alumina and 
SiC whisker reinforced alumina composites (Table 
VI). According to Equation 26, the maximum ther- 
mally induced stresses for alumina-SiC whisker com- 
posites were two to three times larger than those for 
the unreinforced alumina specimens largely because 
the alumina specimens used in this research were 
thinner than the alumina-SiC whisker composites 
used in the earlier study [5].* (The thicker specimens 
have corresponding higher values of Nbi, as shown in 
Equation 27.) Nevertheless, the damage (as deter- 
mined by elasticity and internal friction measure- 
ments) in the unreinforced alumina specimens was 
much larger than the thermal shock induced in the 
alumina-SiC whisker composites (Table VII). For 
example, the relative changes in Young's modulus and 
internal friction for the unreinforced alumina at 
AT = 270 ~ C were 1.4 and 900% respectively. In con- 
trast, the Young's modulus and internal friction 
changes for alumina-SiC whisker composites at the 
same AT were 0.7 and 120%. The rate constant and 
the saturation value of alumina-SiC composites are 
much smaller than those of unreinforced alumina, 
(Table VII) which indicates that the thermal shock 
resistance of the SiC whisker reinforced alumina com- 
posites is superior to the unreinforced polycrystalline 
alumina. 

4. Conclusions 
The accumulation of thermal shock induced micro- 
crack damage for thermally cycled alumina was moni- 

tored by modulus and internal friction changes. For 
low and intermediate values of AT (thermal shock 
severity) the thermal shock damage tends to saturate 
at a sufficiently high number of thermal cycles. This 
saturation value increases as thermal shock tem- 
perature difference increases. 

The relative change in internal friction plotted 
against the damage parameter e can be expressed as a 
power law relation for each of the five thermally 
shocked specimens. The five Q-~ against n curves in 
Fig. 8 are replotted in Fig. 11 in terms ofAQ -1 against 
e damage parameter. The rive t internal friction curves 
from Fig. 8 thus collapse onto a single curve plot of 
AQ ~ against e. Thus the thermal shock damage, at 
least for the specimens included in this study, can be 
expressed as a power law function of the crack damage 
parameter. 

A power law relationship between the saturation 
damage level and thermal shock difference implies a 
fatigue-like power law relation in stress. The crack 
growth rates for the polycrystalline specimens are far 
more sensitive to AT than SiC whisker reinforced 
alumina composites. The exponent in the power law 
was determined to be about 12 for the unreinforced 
polycrystalline alumina (about 2 times larger than that 
of SiC whisker reinforced alumina composites). 
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T A B L E  VII Comparison of damage saturation values A and B, rate constants c~ and /3, and relative changes in Young's modulus 
and internal friction for unreinforced alumina and alumina-SiC whisker composites [5]. 

AT Material A (GPa) B (x 10 s) ~ /3 A / E  o B /Qo  l 

270 alumina-SiC 3.00 20.38 0.042 0.061 0.007 1.2 
composite 

unreinforced 4.77 75.44 0.499 0.970 0.0143 9.0 
alumina 

310 alumina-SiC 6.21 33.65 0.220 0.105 0.0172 3.18 
composite 

unreinforced 19.42 150.88 1.005 1.338 0.0575 24.08 
alumina 

*The dimensions for the unreinforced alumina were 11.5 x 1.3 x 0.1 cm 3, whereas the dimensions for the SiC whisker reinforced alumina 
composites were 7 x 0.7 x 0.3cm 3. 
?The data for the specimen A6 was not included in this figure, since saturation behaviour was not observed for the specimen A6. 
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Figure A1 Young's modulus of the alumina as a function of 
porosity prior to thermal shock damage. Full curve represents 
least-squares best fit to linear equation. Broken curve represents 
least-squares best fit to exponential relation. 

Appendix A. Modul i  and internal 
fr ict ion as a funct ion of porosity 
Generally, the modulus decreases and internal friction 
increases as the porosity increases. In this study, the 
volume fraction porosity, P, of  the polycrystalline 
alumina specimens ranged from 0.061 to 0.074. The 
measured elastic modulus for each of  the undamaged 
polycrystalline alumina specimen used in this study 
are not identical because of  the porosity differences 
among the specimens. In this appendix, we show that 
these differences can be expanded in terms of  well- 
known functional forms for modulus-porosi ty  
relations. Using these modulus-porosi ty  relations, we 
extrapolate to zero porosity and find that the 
unshocked, zero porosity extrapolations of  modulus 
agree well with the elastic moduli calculated from 
single crystal data. 

Modulus-porosity relations for these alumina speci- 
mens were adequately represented by the following 
semi-empirical exponential forms 

E = E0 exp ( - a P )  (A1) 

G = Go exp ( - b P )  (A2) 

where E0, and Go are the Young's  modulus and shear 
modulus, respectively, of  non-microcracked,  theoreti- 
cally dense alumina, P the volume fraction porosity 
and a and b empirical constants. For small P values, 

160 

m 

" ~ 1 4 0  
E 

x z  

120 
' ' 0 . ( )5  ' ' 0.1 

Poros i t y  

Figure A2 Shear modulus of the alumina as a function of porosity 
prior to thermal shock damage. Full curve represents least-squares 
best fit to linear equation. Broken curve represents least-squares 
best fit to exponential relation. 

TABLE AI Results of least squares best fit to porosity- 
modulus equation. 

Exponential equation Linear equation 

E 0 (GPa) 414.41 405.36 
Constant a, c 3.34 2.70 
Correlation coefficient 0.99 0.99 

G o (GPa) 159.67 157.59 
Constant b, d 2.48 2.12 
Correlation coefficient 0.97 0.98 

v 0 0.229 0.222 

the empirical exponential equations can be approxi- 
mated by linear functions, which are 

E / E o  = 1 - c P  (A3) 

G/Go = 1 - d P  (A4) 

where c and d are the porosi ty-modulus slope. 
The results of  least-squares best fit to Equations A1 

to A4 are listed in Table AI and shown in Figs A1 and 
A2. In all cases, the correlation coefficients are greater 
than 0.97. 

The expected bounds for the Young's  modulus and 
shear modulus of  a theoretically dense polycrystalline 
bodies can be calculated from the elasticity data of 
that single crystal. The Voigt and Reusg bounds cal- 
culated from measurements on single crystal alumina 
[47] (Table AII)  are upper and lower bounds of the 
theoretically dense materials '  elastic constants. Since 
these bounds are calculated from single crystal data, 
these aggregate bounds may be used to estimate the 
elastic moduli of  theoretically dense polycrystalline 
specimens. The least-square best fit to the exponential 
equations A1 and A2 differs by 2.7 and 2.2% with the 
E0 and Go obtained from the mean of Voigt and Reuss 
bounds (Tables AI and AII). In contrast, the least- 
square best fit to the linear Equations A3 and A4 
yields E 0 = 405.36 GPa and G O = 157.59 GPa, which 
differs by 0.5 and 3.4% with the E0 and Go from mean 
of Voigt and Reuss bounds (Tables AI  and AII). 

In the present study, the internal friction of the 
alumina specimens did not show a dependence on 
porosity (Fig. A3) for the restricted range of porosity 
exhibited by the specimens in this study. 

In studies of  polycrystalline yttria [48] and magnesia 
[49], Marlowe [48] and Hanna  e t  al. [49] fit their 
internal friction data to a power function of porosity, 
P, such as 

Q - 1  = F p r  (A5) 

where F, r = empirical constant. 

TABLE AII The Voigt and Reuss bounds calculated from 
measurements on single crystal alumina [47] along with the arith- 
matic mean of those bounds for the elastic moduli. 

Bound type Young's modulus Shear modulus Poisson's ratio 
(GPa) (GPa) 

Voigt 408.5 165.7 0.223 
Reuss 398.3 160.7 0.239 

Mean 403.4 163.2 0.236 
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Figure A3 Internal friction of the Y2 03 as a function of  porosity (after Marlowe [48]). (~2~" ynria  (after Marlowe), o alumina (present-study). 
Broken curve represents least-squares best fit to power law relation. 

For Marlowe's data on polycrystalline yttria, F and 
r are 0.009 and 1.925, respectively. For a zero value of 
porosity, Q ~ will not, however, be zero, as predicted 
by Equation A5. There are a number of physical 
mechanisms other than porosity that contribute to 
internal friction [50, 51]. Thus Equation A5 should be 
modified as follows 

Q-~ = Qo I + F'P'" (A6) 

where Qo 1 is the zero porosity internal friction and 
F'and r' are empirical constants. 

Fig. A3 shows a least-squares best fit of revised 
Equation A6 to Marlowe's internal friction data. In 
the present study, the porosity range was so narrow 
(6.1 to 7.5%) that the affect of  porosity on internal 
friction cannot be monitored (Fig. A3). 
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